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\ INSPECTED

,_»AbstfaettféThe shuffle-exchange graph is one of the best structures known for
parallel computation. Among other things, a shuffle-exchange computer can be used

‘:.; to compute discrete Fourier transforms, multiply matrices, evaluate polynomials,
E perform permutations and sort lists. The algorithms needed for these operations are
extremely simple and many require no more than logarithmic time and constant

- space per processor. In this paper, we analyze the algebraic structure of the shuffle-

! exchange graph in order to find area-cfficient embeddings of the graph in a two-
[ ‘ dimensional grid. The results arc applicable to the design of Very Large Scale ;
Integration (VLSI) circuit layouts for a shuffle-exchange computer. T—'* -

Key words: area-efficient chip layouts, complex plane diagram, graph embedding,
necklace, shuffle-exchange graph, Thompson grid model, Very Large Scale
Integration (VLSI)
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1. Intreduction

The shuffle-exchange graph has long been recognized as onc of the best
structurcs known for parallel computation. Among its many applications, a shuffle-
exchange computer can be used to compute discrete Fourier transforms, multiply
matrices, evaluate polynomials, perform permutations and sort lists {[S71, P80, S80].
The algorithms necded for these operations are cxtremely simple and many require
no more than logarithmic time and constant space per processor.

Recent developments in Very Large Scale Integration (VLSI) circuit technology
have made it possible (0 fabricate large numbers of very simple processors on a
single chip. As most of the processors contained in a shuffle-exchange computer are
very simple, the shuffle-exchange graph scrves as an excellent basis upon which to
design and build chip-sized microcomputers. One of the main difficulties with such
an architecture, however, is the problem of routing the wires which link the
processors together in a shuffle-exchange nctwork. Current fabrication technology
limits the designer to two or three layers of insulated wiring on a chip and demands
that he make the chip as small in area as possible.

Abstracted, the designer’s problem becomes the mathematical question of how to
embed the shuffle-exchange graph in the smallest possible two-dimensional grid.
Thompson was the first to formalize the question mathematically. In his thesis
[T80], he showed that any Iayoul.(i.e., embedding in a two-dimensional grid) of the
N-node shuffle-exchange graph requires at least Q(N2/log?N) area. In addition, he
described a layout requiring only O(N2/log!/2N) area. Shortly thereafter, Hoey and
Leiserson [H1.80] described an embedding for the shuffle-exchange graph in the
complex plane (which we refer to as the complex plane diagram) and showed how
the diagram could be used to find an O(N%/logN)-area layout for the N-node
shuffle-exchange graph.

In this paper, we investigate the algebraic properties of the complex plane
diagram in order to find several O(N%/log*?N)-area layouts for the N-node shuffle-
exchange graph. In addition to being asymptotically superior to previously
discovered layouts, the layouts described in this paper are also superior for small
values of N. In fact, one of these layouts scrves as the basis for the more recent
work of Leighton and Miller who have described oprimal layouts for small shuffle-
exchange graphs in [LM81].

o

-~




o

PR
L.

Y W —— Ty P
. . [

Subsequent to the completion of the research presented in this paper, we learned
that Rodeh and Steinberg independently discovered an O(N2/log2N)-area layout
for the N-node shuffle-exchange graph. Their work is also bascd on the complex
plane diagram and appears in [SR81]. Even more recently, Kleitman, Leighton,
Lepley and Miller [KLLM81] have discovered an entirely ncw method for laying out
shuffle-exchange graphs which can be used to find asympiotically optimal

O(N%/log’N)-arca layouts. Although their layouts are not entirely practical, they are

the only layouts known to achieve Thompson’s lower bound asymptotically.

The remainder of the paper is divided into six sections. In scction 2, we define
the shuffle-exchange graph and the grid model of a chip. We also describe
Thompson's O(N%/log!/?N)-area layout for the N-node shuffle-exchange graph. In
section 3, we define the complex plane diagram for the shuffle-exchange graph and
mention several of its properties. In section 4, we describe several layouts for the
shuffle-exchange graph which are based on the complex plane diagram. These
include a straightforward O(N%/fogN)-area layout and several new O(N2/log*?N)-
area layouts. Section 5 contains some remarks and open questions, and scctions 6
and 7 contain the acknowledgements and references.

2. Preliminaries

2a) The shuffle-exchange graph

The shuffle-exchange graph comes in various sizes. In particular, there is an
N-node shuffle-exchange graph for every N which is a power of two. Each node of
the (N=2%)-node shuffle-exchange graph is associated with a unique &-bit binary
string a;.;- - -a;. Two nodes wand w' are linked via a shuffle edge if w' is a left
or right cyclic shift of w (ie., if w = a;,--.a0, and w'= a;.,...aya_, or
w'= a,---a;,a; , respectively). Two nodes w and w' are linked via an
exchange edge if wand w' differ only in the last bit (ie., if w = a;,.-.-a,0 and
w'= ay,---a;] or vice-versa). As an example, we have drawn the §-node
shuffle-exchange graph in Figure 1. Note that the shuffle edges arc drawn with
solid lines while the exchange edges are drawn with dashed lines. We shall follow
this convention throughout the paper.
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Figure 1: The 8-node shuffle-exchange graph.

By replacing the nodes and edges of the shuffle-exchange graph by processors
and wircs (respectively), the shuffle-exchange graph can be transformed into a very
powerful parallel computer (which we call the shuffle-exchange computer). The
computational power of the shuffle-exchange computer is partly derived from the
fact that every pair of nodes in an N-node shuffle-exchange graph is linked by a
path containing at most 2/ogN edges and thus the communication time between
any pair of processors is short.

More importantly, however, the shuffle-exchange computer is capable of
performing a perfect shuffle on a set of data in a single parallel operation. For
example, consider a deck of 8 cards distributed among the 8 processors of the 8-
node shuffle-exchange graph so that processor 000 initially has card 0, processor
001 initially has card 1, processor 010 initially has card 2, and so forth. Next,
consider a (parallel) operation of the shuffle-exchange computer in which each
processor a,a,a, sends its card across a shuffle edge to the neighboring processor
a,aga, . 1t is easily verified that, after completion of the operation, processor 000
contains card 0 (thz top card in the shuffled deck), processor 001 contains card 4
(the second card in the shuffled deck), and so forth.

The power of card shuffling and its mathematical abstractions is well known to
magicians and mathematicians [DGK81] as well as to computer scientists [S71,
S80). For a good survey of the computational power of the shuffle-exchange
graph, we recommend Schwartz’ paper on ultracomputers [S80). In addition,
Stone’s paper [S71] contains a nice description of some important parallel
algorithms based on the shuffle-exchange graph.
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2b) The grid model

Among the many mathematical models that have been proposed for VLSI
computation, the most widely accepted is due to Thompson and is known as the
Thompson grid model [T79, T80]. The grid model of a VLSI chip is quite simple.
The chip is presumed to consist of a grid of vertical and horizontal tracks which
are spaccd apart by unit intervals. Proccssors are viewed as points and are located
only at the intersection of grid tracks. Wires are routed through the tracks in order
to connect pairs of processors. Although a wire in a horizontal track is allowed to
cross a wire in a vertical track (without making an electrical connection), pairs of
wires are not allowed to overlap for any distance or to overlap at corners (i.e., in
they cannot overlap in the same track). Further, wires are not allowed to overlap
processors to which they are not linked. (The routing of wircs in this fashion is
also known as layer per direction routing and Manhattan routing.)

As an example, we have included a grid layout for the 8-node shuffle-exchange
graph in Figure 2. As before, the shuffle edges are drawn with solid lines while the
exchange cdges are drawn with dashed lines. Notice that we have omitted the self-
loops in Figure 2 since they are clectrically redundant. In gencral, the processors
need not all be placed on a single horizontal line (as they are in this example).

0 W N U WD L N I W W W v

000 001 100 oO1lo0 011 101 110 111

Figure 2: A grid model layout of the 8-node shuffle-exchange graph..

Practical considerations dictate that the area of a VLSI layout be as small as
possible. The area of a layout in the grid model is defined to be the product of the
number of horizontal tracks and the number of vertical tracks which contain a
processor or wire segment of the layout. For example, the layout in Figure 2 has
arca 48. As can be easily observed, this is far from optimal.
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2c) Thompson’s layout

Given any k-bit string w, define the size of w to be the number of /-bits it
contains. For example, the size of 10710 is 3. Thompson's idea was to lay out the
N=2% nodes of the shuffle-cxchange graph on a straight line in order of
nondecreasing size. It is easily secn that shuffle cdges link nodes which have the
same size and that exchange edges link nodes which have sizes differing by one.
Thus the cdges of such a layout are relatively short. In fact, nodes connected by
shuftle edges can be placed in a group, so that only 2 horizontal tracks are used for
all the shuffle connections. The remaining horizontal tracks arc occupicd by
exchange edges.

The exchange edges are inserted from left to right so that each exchange edge
occupies two vertical tracks and a portion of the lowest horizontal track which is
empty at the time of its insertion. (For example, Figure 2 displays a layout for the
8-node shuffle-exchange designed in this way.) This well-known strategy for
inserting exchange cdges guarantees that the number of horizontal tracks used will
be minimal, and equal to the maximum number of edges which must (at some
fixed point) overlap onc another. Since exchange edges link nodes which differ in
size by one, it is easily seen that the maximum overlap is at most O(or;uszick BY)
where B, is the number of nodes of size s.

It is easy to show that. B, = C(ks) for each s, where

C(k,s) = kV/[s'(k-9))

is the well-known function for binomial coefficients. It is also well-known that
C(k,s) achieves its maximum value at s= k72 for any k. Using standard asymptotic
analysis, it is casily shown that C(k,k/2) ~ (2/mn)!72(2%/k!7?) for large k. (For a
good review of such techniques, see Bender and Orszag's book [BO78].) Thus
Thompson's layout requires only O(N//og!/?N) horizontal tracks. Since only 1 or
2 vertical tracks are needed to embed the vertical portions of the edges incident to
any given node, we can conclude that Thompson's layout has area O(N%/log!/?N).

3. The Complex Plane Diagram

In [HL80], Hoey and Leiserson observed that there is a very natural embedding
of the shuffle-exchange graph in the complex plane. In what follows, we describe
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this embedding (which we call the complex pla:i.c diagram) and point out some of
its more important properties.

3a) Definition

Let 6, = 277k denote the kth primitive root of unity. Given any k-bit binary
string w = ag; - - - ap, let p(w) be the map which sends w to the point

[KW) = ak,16kk" R o 016k + ao

in the complex plane. As each node of the (N=2%)-node shuffle-exchange graph
corresponds to a k-bit binary string, it is possible to use the map to embed the
shuffle-exchange graph in the complex plane. For example, we have done this for
the 32-nodc shuffle-exchange graph (whence k=J5) in Figure 3. For simplicity,
each node is labeled with its value instead of its 5-bit binary string. (By the value
of a node, we mean the numerical valuc of the associated k-bit binary string.)

+21%

+17

0% 12 19

-1

+2

Figure 3: The complex plane diagram for the 32-node
shuffle-exchange graph. (Taken from [HL80].)
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3b) Properties

Examination of Figure 3 indicates that the complex plane diagram has some
very intercsting properties. First, it is apparent that the shuffle edges occur in
cycles (which we call necklaces) which are symmetrically placed about the origin.
This phenomenon is casily explained by the following identity:

8kp(ak_1 v 00) = ak_ISkk -+ ak_28k"" S+ e + a,8k2 + 008k
- ak.zakk-[ + so. + a()8k + ak_l

= plag.;- - apfg.p).

Thus traversal of a shuffle edge corresponds to a 2w/k rotation in the complex
plane.

Except for degenerate cases, the preceding identity also indicates that each
necklace is composed of & nodes, each a cyclic shift of the other. Such necklaces
are called fill necklaces. Degenerate necklaces contain fewer than & nodes and,
because they must have some symmetry, are mapped entirely to the origin of the
complex plane diagram. For example, {00000} and {0101, 1010} are degenerate
necklaces while both {10/, 011, 110} and {11100, 11001, 10011, 00111, 01110} are
full. As we note in the following proposition, the number of degenerate necklaces
is quitc small compared to the number of full necklaces.

Proposition 1:  There are O(N'7?) degenerate necklaces and N/logN -
ON"2/10gN)  full necklaces in the N-node shuffle-exchange graph.

Proof: A node w is in a degenerate necklace if its binary representation has a
nontrivial symmetry with respect to cyclic shifts. Without loss of generality, such a
string of bits must consist of a block of &/p bits which is repeated p times where p
is some prime divisor of k. As there are 257 binary strings of length &/p, this
means that the number of nodes in degenerate necklaces is at most

plx

22k < OV,

pZ2
The remaining N - O(N*7?) nodes arc in full necklaces. As each full necklace
contains logN nodes, there are  N/logN - O(N'/2/logN) Tull necklaces O

It will often be convenient to refer 0 a necklace by one of its nodes. In
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particular, we will use the notation <> to indicate the necklace generated by w.
This is simply the collection of cyclic shifts of w. For example, the necklace
generated by 101 is <loD> = {101, 011, 110} .

Exchange edges are also embedded in a very regular fashion by the complex
plane diagram. In fact, each exchange cdge is embedded as a horizontal line
segment of unit length. This phenomenon is cxplained by the identity

Kag.,...a00 +1 = a, 8,5 +...+a,8, +1
k-1 1 k-19k 1%k

= p(ak-l...all).

In some cases, several exchange edges are contained in the same horizontal line
of the diagram. Such lines are called /evels. For example, there are 9 levels in the
diagram of the 32-node shuffle-cxchange graph shown in Figure 3. We will use
the properties of levels to find O(N%/log>?N)-area layouts for the N-node shuffle-
exchange graph.

4. Layouts Based on the Complex Plane Diagram

In this section, we present several layouts of the shuffle-exchange graph which
are bascd on the complex plane diagram. We commence with a straightforward
O(N%/logN)-area layout of the N-node shuffle-exchange graph. This layout has
been discovered by many researchers (including Hoey and Leiserson). Later, we
show how the layout can be modified so as to require only O(N</log/?N) area.

4a) A straightforward O(Nz/logN)-area layout

In what follows, we describe a straightforward layout of the shuffle-exchange
graph which requires only O(N?/logN) area. The layout is formed from a grid of
levels and necklaces which we refer to as the level-necklace grid. Each row of the
grid corresponds to a level of the complex plane diagram. The columns of the grid
are divided into consecutive column pairs, cach pair corresponding to a necklace.
The lefimost column of each column pair corresponds to that part of the necklace
which is contained in the left half of the complex plane. Similarly, the rightmost
column of cach pair corresponds to the part of the necklace contained in the right
half of the complex plane.
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The rows of the level-necklace grid must have the same top-to-bottom order as
do the corresponding levels in the complex plane diagram. The columns, however,

may be arranged arbitrarily (provided that columns corresponding to the same
necklace are adjacent in the grid).

Each node of the shuffle-exchange graph is placed at the intersection of the row
and column of the grid which correspond to the level and part of the necklace (left
half or right half) to which it belongs in the complex planc diagram. For example,
we have done this for a random ordering of the necklaces of the 32-node shuffle-
exchange graph in Figure 4. (Notice that we have used just one column each for
the degenerate necklaces <0> and <21> since they each contain just one node. In
general two columns will be required for necklaces which are mapped to the origin
of the complex plane diagram, but the nodes of cach such necklace should still be
lumped togther at a single point of the level-necklace grid.)

necklaces

€3> <7> <ID <1> <52<0y<15><31>

L% 7
2 3 14 2 15
3 22 4 5 23
4 11 10 J
levels 5 12 9 113 1 1810 [30 31
6 71 20
.7 T T8 5 57
8 17 |28 VTIG 29
9 L

24 25

Figure 4: A level-necklace grid for the 32-node shuffle-exchange graph.

Given a level-necklace grid for a shuffle-exchange graph, it is not difficult to
produce a layout for the graph. The main step is to partition the exchange edges in
each row of the grid into nonoverlapping subsets. Each subset can then be
assigned to a horizontal track of the layout. Except for thc row corresponding to
the real line in the complex plane diagram, the assignment of subsets to horizontal

. . -
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tracks within a row is arbitrary. (The assignment of horizontal tracks containing
nodcs on the real line must preserve the cyclic oricntation of the nodes which are
in nccklaces that are mapped to the origin.)

Once this is done, the exchange edges can be insertcd in the horizontal tracks
and the shuffle cdges can be inserted in the vertical tracks. (To be precise, some of
the shuflle edges also occupy part of a horizontal track at the top or bottom of the
layout.) By Proposition 1, the number of vertical tracks occupied by the necklaces
is at imost 2N/logN + O(N'72). Since there are precisely N/2 exchange edges, at
most N/2 + 2 horizontal tracks arc containced in the layout. Thus the total area
of the layout of the N-node shuffle-cxchange graph is at most N2/logN + O(N*/?),
As an example, we have displayed in Figure 5 a layout of the 32-node shuffle-
exchange graph produced from the level-necklace grid in Figure 4.

necklaces

<3y <712 <11D K17 <52 <0><15 3

e | — =] —
I b
2 O ale vlewlecclcalanic wlicaams -9
14 15
O e e e o | - fn
3{ 22 123
-
5
4 }u- 1" T |
L2l hs 1717 % 36|
levels =~ 5 12 Ao -4
| Tl T 18
6 BT 120
%‘ pants. wn jomn eut | um ot | on - ‘-' —— ~J
7 26 27
0-8-———-.—?9
8 { 73 el o i i i PX')
o2 e e e e R A
s it hs

Figure 5: Layout of the 32-node shuffle-exchange graph
produced from the level-necklace grid shown in Figure 4.
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4b) An improved O(N2/10g3/2N)-arca layout

It is possible to improve the layout described in section 4a by reducing the
number of horizontal tracks needed to embed the exchange edges. This can be
done by rcordering the necklaces from left to right so as to increase the average
number of exchange edges which can be inscited on each horizontal track. For
E example, the ordering of the nccklaces shown in Figure 6 results in far fewer _ ]
horizontal tracks being uscd than did the ordering of nccklaces shown in Figure S. .

necklaces

—r ‘iw ¥

<0> <1> <3> <5> <7> <]11l> <15x%31>

oW e
——

)
NI'—
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e
£
'
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|
;L_
Abubdeidaldnith.

wn

‘ levels

G TR bl

W o ~ O
=
=
d\“
Vo
—
:
b
[e+)
'
]
4

Figure 6: An improved layout for the 32-node shufjle-exchange graph.

1 Although we do not know how to best order the necklaces in general, we have . ]

o found several orderings which yield O(N2/log3/?N)-area layouts for the N-node - =

} shuffle-exchange graph. For instance, we will show in what follows that such a - 1

f layout can be constructed by arranging the necklaces from left to right in order of '

[ nondccreasing size. (The size of a necklace is simply defined to be the size of any
]

of its nodes.) As an example, the layout displayed in Figure 6 is of this form.
(This observation has also been made by Steinberg and Rodceh in [SR81]).) -

In order to bound the number of horizontal tracks necded to insert the exchange

11 L.
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edges, we will show that the maximum overlap of exchange edges on each level is
at most the number of nodes of size h = |(k-1)/2) on that level. Since the
maximum overlap of exchange edges on cach level is an upper bound on the
number of horizontal tracks nceded to insert the exchange cdges on that level, we
can thus conclude that the total number of horizontal tracks needed to insert all of
the exchange edges is at most

B, < By, = (Um)”2N/log”’N + O(N/log"?N).
Thus the resulting layout will have area at most

A2 m)2N2110g?’N + O(N%/log"’N).

Although it is clear that the maximum rotal overlap (over all levels) of exchange
edges is at most B, ,, this is not sufficient to prove the result since any layout
must also preserve the top-to-bottom partial order induced by the necklace
structure on the exchange edges. It is only within individual levels that the top-to-
bottom ordering of exchange cdges is arbitrary. (As we noted earlier, some minor
precautions are necessary for the level corresponding to the rcal linel) It is  not
immediately clear, however, why the maximum overlap on cach level is at most the
number of nodes of size h<k/2 on that level. In what follows, we establish this
result by breaking up cach level into sublevels (for which the analysis is easier) and
showing that the maximum overlap on each sublevel is at most the number of
nodes of size h on that sublevel: The analysis requires some additional notation.

Consider a node of the form a;._;- - -a,0 for which either a;_;=0 or a;=0 or
both for each i<k. We will refer to such a node as basis node. A node
by.;- - -by is said to be generated by the basis node a;---ap if

1) by ;=ay.; and b;=a; whenever a;_#a; for 1< i< k-1, and
2) b,.;=b; whenever a;;=a,=0 for 1 <i < k-1.
For example, 70000 generates 10001, 11100 and 1110/ but not 11111.

It is not difficult to show that if 4 generates v, then both u and v are on the same
level of the complex plane diagram. For example, let u« = a;,---a, and
v = b, --by and observe that

V) - o) = (byy-ap. )8!+ .o+ (b,-a)) 8 + (by- ap)

= ck.,8k"" + o0+ c,8k + o
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where ¢;;=c; foreach i I <i< k-1. Since 8,57 is the complex conjugate of
) ki for 1 < i< k-1, wecan conclude that p(v) - p(u) is a real number and thus
that ¥ and v are in the same level of the complex plane diagram.

It is also easy to show that each nodc of the shuffle-exchange graph is generated
by a unique basis node. In particular, the node which gencrates b;_,- - - b, can
be found by

1) setting by=0 and (if k is even) setting b ,,=0, and
2) setting b;=b,.;=0 for each / such that (originally) b=b, ,=1.

Since exchange edges link nodes which have the same basis node, we can
conclude from the preceding arguments that it is possible to partition each level of
the complex plane diagram into sublevels so that the nodes in each sublevel are
precisely the nodes gencrated by some basis node. We will now show that the
maximum overlap on each sublevel is at most the number of nodes of size h on
that sublevel,

Since the necklaces have been arranged from left to right in order of
nondecreasing size, the overlap of exchange cdges between two nodes of size s in
any sublevel is at most O(Or‘ng‘xk B;') where B;' is the number of nodes in that
sublevel with size 5. In the following proposition, we compute B,' and show that
its maximum for any sublevel. occurs at s=h.

Proposition 2. Each basis node of size r generates B' nodes of size s, where
1) B' =C(h-r, i) for s=r+2iand i< h-r, and
2) B' =Ch-r,0) for s=r+2i+1 and i< h-r
when k is odd, and
1) B' =CCh-r+1,0) for s=r+2i and i< h-r+1, and
2) B' =2CCh-r,0) for s=r+2i+1 and i< h-r
when k is even.

Proof: When k is odd, there are precisely h - r pairs a; =a;.; =0 in a basis
node of size . In order to generate a string of size s=r+2i when k is odd, we
must set b,=0 and set / of the /-r pairs so that b; =b;.; =1. There are C(h - 1, i)
such strings. To generate a string of size s=r+2i+1 when k is odd, we must set

by=1 and choose i of the h-r pairs so that b; =b;.; =I. As before, there are
C(h - r, ) such strings.

13




When k is even, therc is also the degenerate pair a;,, =0. To generate a string
of size s=r+ 2i when k is even, we must choose ¢/ of the A - r+ [ pairs so that bj
=by.; =1 (this count includes the "pair” by =b;,, =1). There are C(h - r+1, )
such strings. To generate a string of size s=r+2i+/ when k is even, we must set
either by=1 and by ,,=0 or by=0 and b;,,=1, and choose i of the hr pairs so
that bj =bk_j =1 (j# k/2). There are 2C(h - r, i) such strings 3

Given Proposition 2, it is easily checked that the maximum value of B' for any
sublevel (independent of the value of r) occurs when s=h. Thus the sum (over all
sublevels) of the maximum overlap at each sublevel is at most the number of nodes
of size h = |(k-7)/2 in the ‘entire graph. This is at most C(k, k/2) ~
(/m)7%2%/k'72). Thus the total area of the layout is no more than

AVn)IN/log?N + O(N¥log"?N),

as claimed.

4c) Additional O(N?/log>?N)-area layouts

By varying the order of the necklaces in the level-necklace grid, it is possible to
produce a variety of layouts for the shuffle-exchange graph which require at most
O(N%/log*?N) area. The complex plane diagram itself suggests one such ordering.
For example, consider an arrangement of the necklaces from left to right in order
of nondecreasing radius. (The radius of a necklace is defined to be the distance of
its nodes from the origin in the complex plane diagram.) Such a layout
corresponds to a folding of the complex plane diagram along its imaginary axis
followed by a straightening of the necklaces. In what follows, we will show that,
like a layout by necklace size, a layout by necklace radius has area O(N2/log"?N).

Because the layout by radius is so closely related to the complex plane diagram,
our analysis will center on the complex plane diagram, itself. As before, we will
partition the levels into sublevels and find an upper bound on the maximum
overlap of exchange cdges on each sublevel separately. The number of horizontal
tracks needed to insert the exchange edges will then be at most the sum of these
upper bounds. We will show that this sum is at most O(N/log!'/?N).

Notice that the maximum overlap of exchange edges on a sublevel of the level-
necklace grid is at most twice the maximum overlap on that sublevel in the
complex plane diagram. (The factor of two is introduced by the "folding" of the

14
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diagram along its imaginary axis. Although straightening the necklaces might
affect the maximum roral overlap of exchange edges, it docs not affect the overlap
within a sublevel.) '

Within a sublevel, an exchange ecdge can be identified by the real part of its
midpoint. For example, the real part of the midpoint of exchange edge
(by-y-..0,0, byy...by1) is

by cos(2m(k-1)/k] + ... + bjcos[2n/k] + 172.

If a is a basis clement of a sublevel, then a generates the other nodes in that
sublevel by substitution of the appropriate pairs of ones. For instance, we may set
blzbk'lz l, if a,=ak_,=0. Let

denote those indices 7 <i <h where a pair of /-bits may be substituted for a pair
of 0-bits. (As before, h = |(k - Iy’2) but for convenience, we shall henceforth
assume that & is odd.) Notice that if b is generated by a, then the real part of the
midpoint of the exchange cdge incident to b is

(el idn
22b,-cos(2w17k) + _Ecos(Zka) + 172
1S¢eth

We now introduce a random variable Z,,, which has as its image, all of the real
parts of the midpoints of edges in the sublevel generated by a. Since b;=b;.; can
be cither 0 or / when i € T, let B; be a random variable representing this choice.
In particular,

B; = 0 with probability /2, and
B; = 1 with probability 1/2.

Then iR L
Z, = X 2cos(2mi/k) B; + cos(2mi/k) + 172
18is
ceTq

= 22 cos(2mirk) (B;- 1/2).

Since the exchange edges have unit length in the complex plane diagram, two
edges overlap if and only if their midpoints are within unit distance of each other.
Thus the number of edges which overlap at position x on the sublevel generated
by a node a is given by the formula

15
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A7d Prob[x-1/72 < Z,< x+1/3) ,

where |T| denotes the cardinality of T,. (We caution the reader that the notation
Ix| is also used to denote the absolute value of x.)

Although the distribution function of Z, is difficult to analyze dircctly, it does
behave like a normal distribution.  This is because Z, is the sum of independent
random variables which have mean 0 and variance o2 =cos’(2wi/k). The Berry-
Esseen Theorem states precisely how far  Z, can vary from a normal distribution.
(For a proof of this theorem see [F71].)

Berry-Esscen Theorem: Letr X,, X,,..., X, be independent random

variables such that B(X) = 0, E(XP) = o7, and E(X7)) = p; for 1<i<m.
Set 2= o2+ -+0,° and r= p;+---+p,. Inaddition, let F denote
the cumulative distribution function of the sum (X;+---+X,)/s. Then for all x,

IRx)-®(x)| < 6r/5

where @ is the standard normal cumulative distribution function 0O
In the case of a sublevel generated by a node a, we have

X; = 2cosQ2ui/k) (B;-172) for i€T,,

]

cela
s2 = Xcos?(2mizk)  and
(€7a
r, = 2 cosd Cnizk)|.
Applying the Berry-Esseen Theorem, we can thus conclude that
Prob[x-1/72<Z, < x+172) = Prob[(x-1/2)/s,< Z /s, < (x+1/2)/s,]
< O[(x+172Vs) - ®l(x-172Vs) + 12r)s}

Because the standard normal density function is symmetric and unimodal, we can
conclude that the maximum of Prob[x-1/2< Z,< x+1/2] occursat x = 0
and is at most O(I/s, + r/s?).

In the following proposition, we fina bounds for the values of r, and s,.
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Proposition 3: For any basis node a
67
r, = 2 lcosQmick)| < 7] and

cen

s = Dot Quizk) 2 QT 7K.

Proof: 'The bound on r, is easy to compute since lcos’Cnizk)l < 1. The
calculation of s, is a bit more tedious. In order to obtain a lower bound,
cos’(2wi/k) must be made as small as possible. The smallest values occur when
T, contains indices i which are as close to (k-7)/4 as possible. In this case, we can
approximate cos’(2wi/k) with the value o(w/2 - 2xi’k)?, for some constant c.
Dircct computation reveals that the sum of thesc squares is at least Q(|Ta|3/k2) 0

Since |T ] < k for all a, we can conclude from the preceding that the maximum
overlap of exchange edges on a sublevel generated by a is -at most

o@Td k3 /|1 )772).

Noting that there are prééiscly Cc(h,)) 27 sublevels gencrated by a node for
which |T,] = j and summing, we can conclude that the total number of horizontal
tracks needed to insert all of the exchange edges is at most

h . .
> Ch. )2 02 K777
381

A
= O K32" D cth.p/i”? )
Fr

It is not difficult to check that the dominant terms in the preceding sum occur
when j = W2 + O(h'”’logh). In this region, j = ©(k) and thus the sum is
bounded above by

h
O[2" k2% C(h.j)] = O@kI/kl7)
J='

= O(N/log!”?N),

thus completing the proof that a layout by necklace radius takes at most
O(N%/10g%2N) area.
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5. Remarks

It is worth remarking that the O(N%/log3/?N)-area layouts for the shuffle-
exchange graph described in section 4 actually require Q(N%/log"2N) area and
thus our analysis of these layouts cannot be improved by more than a constant
factor. In each case, the lower bound on arca can be derived from the fact that the
maximum fotal overlap of exchange edges in the layouts is at least Q(N/log!/2N).
(Remember that although the maximum total overlap of exchange edges is not an
upper bound on the number of horizontal tracks needed to insert the exchange
edges, it is a lower bound.)

The Q(N/log!”?N) lower bound on maximum overlap is easily es ablished for
the layout according to necklace size since S2(N//og'/?N) exchange edges link
nodes of size k72 to nodes of size k&/2+ 1. The lower bound on maximum overlap
is somewhat more difficult to prove for the layout according to necklace radius.
The first step in the proof is to show that at least N/2 exchange edges are
contained within a square of side length ck’/? centered at the origin of the
complex plane diagram (where c is a constant). (This can be done by using the
techniques developed in section 4c.) Next consider the sum (over /) of the total
overlaps at points corresponding to radii of /2 for /<i<ck’’2. Because the
complex plane diagram is radially symmetric, it is possible to show that at least
Q(N) exchange edges are counted. in this sum. Thus the overlap at one of these
points must be at least Q(N/k'/?).

Since Thompson [T80] has shown that any layout for the N-node shuffle-
exchange graph must have area at least Q(N“/log’N), we know that at least
$A(N/IlogN) horizontal tracks are needed to inscrt the exchange edges for any
ordering of necklaces in the level-necklace grid. However, there is no ordering of
the necklaces known for which the exchange edges can be inscrted using lcss than
o(N/log!/2N) horizontal tracks. This suggests an interesting open question since it
would be nice to find an O(N2/log?N)-area layout based on the complex plane
diagram. (Although an asymptotically optimal O(N%/log’ N)-area layout for the
shuffle-cxchange graph has recently been found by Kleitman, lLeighton, Lepley
and Miller [KLLM81]), it is rather complicatcd and of limited practical use.)

Although we do not know of necklace orderings for which the exchange edges
can be inserted using less than o(N/log!/?N) horizontal tracks, we do know of
orderings for which the maximum total overlap of exchange edges is at most
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O(NloglogN/logN). For example, an ordering of the necklaces by minimum value
has a maximum total overlap of O(NloglogN/logN). (The minimum value of a
necklace is simply the minimum of the values of the nodes contained in the
necklace.)

Interestingly, an analysis of the minimum (over all orderings) of the maximum
total overlap for small values of N indicates that there may always be an ordering
for which the maximum total overlap is at most O(N/logN), the least possible. In
fact, for 3 < N < 7, this minimum maximum overlap is precisely |(_2" -2/K. A
summary of the minimum maximum overlap data for small values of N is included
in Table 1.

Table 1

Maximum Overlap of Best Known Orderings

maximum overlap of

k N best known ordering optimal?
3 8 2 yes
4 16 3 yes
5 32 6 yes
6 64 ' 10 yes
7 128 18 yes
8 256 33 yes
9 512 62 ?
10 1024 115 ?
11 2048 214 ?
12 4096 388 ?
13 8192 754 ?

In addition to varying the order of the necklaces, improvements in the layout
may also be made by rearranging the level assignments of the exchange edges. For
example, the layout of the 32-node shvffle-exchange graph shown in Figure 7 was
constructed in this way. (The carcful reader will notice that we have also
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manipulated the necklaces somewhat in order to produce this layout.) For a more
detailed discussion of the manner in which exchange edges can be reassigned, we
refer the reader to [LM81). (Such layouts have also been used in conjunction with

the Blue Chip Project at Purdue [S81})
v Jis
- 22 |23
s 3031 ,

21 2627

fh 17 24 25 28 29

Figure 7: An improved layout for the 32-node shuffle-exchange graph.
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